Operating System Concepts

Lesson 23, 24, 25
Objectives

Virtual Memory
Demand paging
Page fault

Page replacement

Thrashing

Virtual Memory

A portion of secondary storage that is used as an extension of physical memory called

virtual memory. Separation of user logical memory from physical memory so that only

active processes may be kept in main memory while rest may be moved to virtual

memory. It is implemented via demand paging or demand segmentation or both. Its

features include:

Only part of the program needs to be in memory for execution.
Logical address space can therefore be much larger than physical address space.
Allows address spaces to be shared by several processes.

Process creation becomes efficient.

It page that is no more needed may be swapped out to virtual memory from main memory

and an active page may be swapped into main memory.



Operating System Concepts

program swap out UD 1[! 2l:l SD

A . £ 50 0] 7]

- 8] e¢[J1o[] 1]

i 12[]13[]14[]15[]

oan W swepl 16(]17[118[ 119 ]
) 20[]21[J22[]23[]

S >

main
memaory

Demand Paging
Bringing the pages of a process from virtual memory to main memory on demand basis
instead of bringing all the pages at once is called demand paging. Bringing a page into
memory only when it is needed. If page is needed reference to, if it found use it,
otherwise fetch it from virtual memory. It helps in:

e Less I/O needed

e Less memory needed

e Faster response

e More user programs
Page table contains the page references and additionally valid/invalid bit. The bit may be
used for memory protection that if reference doesn’t exist then it is set to ‘i’ otherwise it

is set to ‘v’. This is to avoid wrong pointers. This concept is shown in figure below.



Operating System Concepts

0
1
0 A 2 _
valid—invalid ST
] = frame\ ?“ . \‘\v/’x
2 ¢ ol 4 |v 4 A D D |:|
3 D 1 i 5
. - 2 6 |v 6 C I:l
3 i
5| F o | ’ [o]
5|9 |v 8
" .- s | o| F H N
7 H 7 i -
logical page table D D I:l
memory i |
12 v&j
13
14
15
physical memory
Page Fault

A situation when CPU demands a page and page is not currently in the main memory but

at virtual memory. It is an interrupt and it is handled before process proceeds further. If

page is found then it is called page hit if not found the called page miss. Page fault

handling consists of following steps.

1.
2.
3.

4.
5.
6.

Report the trap

Save the state of current process

Find empty frame in main memory in process area if not found then replace the
page

Fetch the page from virtual memory to main memory

Reset page table, also set valid bit to ‘1’

Restart the instruction (process)

These steps are shown in figure below.



Operating System Concepts

(3 page is on
~~ backing store

N\

operating
system —
(2)
i,
reference trap

load M | - E
‘a
@_)
restart page tab!e
instruction
free frame ' -
®) O
reset page bring in

table missing page

physical
memory

Page Replacement

What will happen if there is no frame free to bring the new page of a process that is just
demanded?

Find the page that is currently may not be needed, by applying some algorithm (we shall
study subsequently) and replace it with the new page and then restart the process. In this

way same page may be brought in the memory again and again.



Operating System Concepts

frame , / valid—invalid bit

¥
change page
=13 to invalid
f \
@ f| victim
reset page ( : )
page table o .
new page swap oy
desired |

physical
memory

Now whether the demand paging is feasible, we can see it by it performance analysis.
Assume the page fault rate is p; where 0<p<1; if p=0 then there is no page fault and if
p=1. Then the effective access time can be found as;
EAT= (1-p) x (memory access time) + p x (page fault overhead + swapping overhead +
restart overhead)
Example;
Memory access time = 1 microsecond

e 50% of the time the page that is being replaced has been modified and therefore

needs to be swapped out.

e Swap Page Time = 10 msec = 10,000 msec

e EAT=(1-p)x1+p(15000) =1+ 15000P (in msec)
Page Replacement Algorithms
Criteria:

e Want lowest page-fault rate.



Operating System Concepts

e Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string.

e More number of frames cause less number of page faults

16 |-
14 F
2
8 12F
>
g 10F
o
5 g}
)
o]
£ 6 I
=
[
4 F
2—.
] I I ] I |

1 2 3 4 5 6
number of frames

First in first out (FIFO)
Replace the page that is brought first in the memory.

o 4 2 3 0 3 2
2| 14 |4 [4] |9
o] [9f [of [9] [2

Example-1
reference string

7 0 1 2 0 3

page frames

There are 15 page faults.
Example-2



Operating System Concepts

Reference string: 1,2, 3,4,1,2,5,1,2,3,4,5
3 frames (3 pages can be in memory at a time per

process)
11114 5
2 12| 1 3 9page faults
3132 4
4 frames
115 4
21211 5 10 page faults
3 |13]| 2
414|383

FIFO Replacement — Belady’s Anomaly
+ more frames = less page faults

[lustration of Belady’s anomaly is given below.

16
14
L
3 12 o
b}
g 10
a
© 8
Q
e
= 6
E it
4
2
1 2 3 4 5 6 7
number of frames

Global and Local Replacement



Operating System Concepts

Global replacement — process selects a replacement frame from the set of all frames; one
process can take a frame from another.

Local replacement — each process selects from only its own set of allocated frames.
Optimal Algorithm

Replace the page that will not be used for the longest period of time.

reference string
7. 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 A1

page frames

There are 9 page faults.
Least Recently Used (LRU) Algorithm
Counter implementation: Counter determines that how much a page is recent.
e Every page entry has a counter; every time page is referenced through this entry,
copy the clock into the counter.
e When a page needs to be changed, look at the counters to determine which are to

change.

reference string
7 o 1t 2 o0 3 0 4 2 3 0 3 2 1 2 o0 1 7 0 A1

page frames

It exhibits 12 number of page faults.
Stack implementation — keep a stack of page numbers in a double link form:
e Page referenced:
e Move it to the top
e Requires at the most 6 pointers to be changed (number of distinct pages)

e No search for replacement



Operating System Concepts

reference string

4 7 o0 7 1 0 1 2 1 2 7 1 2

2 7§ b
1 2
0 1
7 0
4 4
stack before a stack after b

Thrashing
If a process does not have “enough” pages, the page-fault rate is very high. This leads to:

e Low CPU utilization.
e Operating system thinks that it needs to increase the degree of multiprogramming.
e Another process added to the system.

e Thrashing = a process is busy swapping pages in and out.

A

I >
! thrashing

CPU utilization

degree of multiprogramming



